If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-816x+10200=0
a = 10; b = -816; c = +10200;
Δ = b2-4ac
Δ = -8162-4·10·10200
Δ = 257856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{257856}=\sqrt{64*4029}=\sqrt{64}*\sqrt{4029}=8\sqrt{4029}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-816)-8\sqrt{4029}}{2*10}=\frac{816-8\sqrt{4029}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-816)+8\sqrt{4029}}{2*10}=\frac{816+8\sqrt{4029}}{20} $
| 20/n=9/180 | | 8(n+-20)=-88 | | n/6=48/4 | | -22x+13x=68 | | -10+3.5x=55 | | 32/n=16/56 | | f/7-45=51 | | 5/n=13/20 | | b-96/3=1 | | |3x+4|=-1 | | -10=x2-3 | | 2*3+y=10 | | -2m+10=1.2 | | 2*0+y=10 | | -98=-7(z-82) | | 4y-16=56 | | 28=2x+4= | | 5*7-8=y | | 1=j/10-2 | | 5.4p+13.1=-2.6+3.5 | | 5*2-8=y | | r+44/6=-5 | | 5*1-8=y | | 5x^2-148x+1850=0 | | 2(r+-77)=-76 | | 5x^2-148x+1850= | | -3*0+4=y | | 10=s+50/4 | | -3*7+4=y | | 2x²+12x=144 | | 7(w+40)=-7 | | -x-9=5+x |